Для настоящих женщин

Кинетическая и потенциальная энергия. Энергия. Закон сохранения энергии Теорема о кинетической энергии

Если в замкнутой системе не действуют силы, трения и силы сопротивления, то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной .

Рассмотрим пример проявления этого закона. Пусть тело, поднятое над Землей, обладает потенциальной энергией Е 1 = mgh 1 и скоростью v 1 направленной вниз. В результате свободного падения тело переместилось в точку с высотой h 2 (E 2 = mgh 2), при этом скорость его возросла от v 1 до v 2 . Следовательно, его кинетическая энергия возросла от

Запишем уравнение кинематики:

Умножим обе части равенства на mg, получим:

После преобразования получим:

Рассмотрим ограничения, которые были сформулированы в законе сохранения полной механической энергии.

Что же происходит с механической энергией, если в системе действует сила трения?

В реальных процессах, где действуют силы трения, наблюдается отклонение от закона сохранения механической энергии. Например, при падении тела на Землю сначала кинетическая энергия тела возрастает, поскольку увеличивается скорость. Возрастает и сила сопротивления, которая увеличивается с возрастанием скорости. Со временем она будет компенсировать силу тяжести, и в дальнейшем при уменьшении потенциальной энергии относительно Земли кинетическая энергия не возрастает.

Это явление выходит за рамки механики, поскольку работа сил сопротивления приводит к изменению температуры тела. Нагревание тел при действии трения легко обнаружить, потерев ладони друг о друга.

Таким образом, в механике закон сохранения энергии имеет довольно жесткие границы.

Изменение тепловой (или внутренней) энергии возникает в результате работы сил трения или сопротивления. Оно равно изменению механической энергии. Таким образом, сумма полной энергии тел при взаимодействии есть величина постоянная (с учетом преобразования механической энергии во внутреннюю).

Энергия измеряется в тех же единицах, что и работа. В итоге отметим, что изменить механическую энергию можно только одним способом - совершить работу.

Для потенциального силового поля можно ввести понятие о потенциальной энергии как о величине, характеризующей «запас работы», которым обладает материальная точка в данном пункте силового поля. Чтобы сравнивать между собой эти «запасы работы», нужно условиться о выборе нулевой точки О, в которой будем условно считать «запас работы» равным нулю (выбор нулевой точки, как и всякого начала отсчета, производится произвольно). Потенциальной энергией материальной точки в данном положении М называется скалярная величина П, равная той работе, которую произведут силы поля при перемещении точки из положения М в нулевое

Из определения следует, что потенциальная энергия П зависит от координат х, у, z точки М, т. е. что

т. е. потенциальная энергия в любой точке силового поля равна значению силовой функции в этой точке, взятому с обратным знаком.

Отсюда видно, что при рассмотрении всех свойств потенциального силового поля вместо силовой функции можно пользоваться понятием потенциальной энергии. В частности, работу потенциальной силы вместо равенства (57) можно вычислять по формуле

Следовательно, работа потенциальной силы равна разности значений потенциальной энергии движущейся точки в начальном и конечном ее положениях.

Выражения потенциальной энергии для известных нам потенциальных силовых полей можно найти из равенств (59) - (59”), учитывая, что . Таким образом, будет:

1) для поля силы тяжести (ось z вертикально вверх)

2) для поля силы упругости (линейного)

3) для поля силы тяготения

Потенциальная энергия системы определяется так же, как и для одной точки, а именно: потенциальная энергия П механической системы в данном ее положении равна работе, которую произведут силы поля при перемещении системы из данного положения в нулевое,

При наличии нескольких полей (например, полей сил тяжести и сил упругости) для каждого поля можно брать свое нулевое положение.

Зависимость между потенциальной энергией и силовой функцией будет такой же, как и для точки, т. е.

Закон сохранения механической энергии. Допустим, что все действующие на систему внешние и внутренние силы потенциальны. Тогда

Подставляя это выражение работы в уравнение (50), получим для любого положения системы: или

Следовательно, при движении под действием потенциальных сил сумма кинетической и потенциальной энергий системы в каждом ее положении остается величиной постоянной. В этом и состоит закон сохранения механической энергии, являющийся частным случаем общего физического закона сохранения энергии.

Величина называется полной механической энергией системы, а сама механическая система, для которой выполняется закон консервативной системой.

Пример. Рассмотрим маятник (рис. 320), отклоненный от вертикали на угол и отпущенный без начальной скорости. Тогда в начальном его положении , где Р - вес маятника; z - координата его центра тяжести. Следовательно, если пренебречь всеми сопротивлениями, то в любом другом положении будет или

Таким образом, выше положения центр тяжести маятника подняться не может. При опускании маятника его потенциальная энергия убывает, а кинетическая растет, при подъеме, наоборот, потенциальная энергия растет, а кинетическая убывает.

Из составленного уравнения следует, что

Таким образом, угловая скорость маятника в любой момент времени зависит только от положения, занимаемого его центром тяжести, и в данном положении всегда принимает одно и то же значение. Такого рода зависимости имеют место только при движении под действием потенциальных сил.

Диссипативные системы. Рассмотрим механическую систему, на которую кроме потенциальных сил действуют неизбежные в земных условиях силы сопротивления (сопротивление среды, внешнее и внутреннее трение). Тогда из уравнения (50) получим: или

где - работа сил сопротивления. Так как силы сопротивления направлены против движения, то величина всегда отрицательная Следовательно, при движении рассматриваемой механической системы происходит убывание или, как говорят, диссипация (рассеивание) механической энергии. Силы, вызывающие эту диссипацию, называют диссипативными силами, а механическую систему, в которой происходит диссипация энергии, - диссипативной системой.

Например, у рассмотренного выше маятника (рис. 320) благодаря трению в оси и сопротивлению воздуха механическая энергия будет) со временем убывать, а его колебания будут затухать; это диссипативная система.

Полученные результаты не противоречат общему закону сохранения энергии, так как теряемая диссипативной системой механическая энергия переходит в другие формы энергии, например в теплоту.

Однако и при наличии сил сопротивления механическая система может не быть диссипативной, если теряемая энергия компенсируется притоком энергии извне. Например, отдельно взятый маятник, как мы видели, будет диссипативной системой. Но у маятника часов потеря энергии компенсируется периодическим притоком энергии извне за счет опускающихся гирь или заводной пружины, и маятник будет совершать незатухающие колебания, называемые автоколебаниями.

От вынужденных колебаний (см. § 96) автоколебания отличаются тем, что они происходят не под действием зависящей от времени возмущающей силы и что их амплитуда, частота и период определяются свойствами самой системы (у вынужденных колебаний амплитуда, частота и период зависят от возмущающей силы).


Если на систему действуют одни только консервативные силы, то можно для нее ввести понятие потенциальной энергии . Какое – либо произвольное положение системы, характеризующееся заданием координат ее материальных точек, условно примем за нулевое . Работа, совершаемая консервативными силами при переходе системы из рассматриваемого положения в нулевое, называется потенциальной энергией системы в первом положении

Работа консервативных сил не зависит от пути перехода, а потому потенциальная энергия системы при фиксированном нулевом положении зависит только от координат материальных точек системы в рассматриваемом положении. Иными словами, потенциальная энергия системы U является функцией только ее координат.

Потенциальная энергия системы определена не однозначно, а с точностью до произвольной постоянной. Этот произвол не может отразится на физических выводах, так как ход физических явлений может зависеть не от абсолютных значений самой потенциальной энергии, а лишь от ее разности в различных состояниях. Эти же разности от выбора произвольной постоянной не зависят.

консервативны, то А 12 = А 1О2 = А 1О + А О2 = А 1О – А 2О. По определению потенциальной энергии U 1 = A 1O , U 2 = A 2O . Таким образом,

A 12 = U 1 – U 2 , (3.10)

т.е. работа консервативных сил равна убыли потенциальной энергии системы.

Та же работа А 12 , как было показано ранее в (3.7), может быть выражена через приращение кинетической энергии по формуле

А 12 = К 2 – К 1 .

Приравнивая их правые части, получим К 2 – К 1 = U 1 – U 2 , откуда

К 1 + U 1 = К 2 + U 2 .

Сумма кинетической и потенциальной энергий системы называется ее полной энергией Е . Таким образом, Е 1 = Е 2 , или

E K + U = const. (3.11)

В системе с одним только консервативными силами полная энергия остается неизменной. Могут происходить лишь превращения потенциальной энергии в кинетическую и обратно, но полный запас энергии системы измениться не может. Это положение называется законом сохранения энергии в механике.

Вычислим потенциальную энергию в некоторых простейших случаях.

а) Потенциальная энергия тела в однородном поле тяжести. Если материальная точка, находящаяся на высоте h , упадет на нулевой уровень (т.е. уровень, для которого h = 0), то сила тяжести совершит работу A = mgh . Поэтому на высоте h материальная точка обладает потенциальной энергией U = mgh + C , где С – аддитивная постоянная. За нулевой можно принять произвольный уровень, например, уровень пола (если опыт производится в лаборатории), уровень моря и т.д. Постоянная С равна потенциальной энергии на нулевом уровне. Полагая ее равной нулю, получим

U = mgh . (3.12)

б) Потенциальная энергия растянутой пружины. Упругие силы, возникающие при растяжении или сжатии пружины, являются центральными силами. Поэтому они консервативны, и имеет смысл говорить о потенциальной энергии деформированной пружины. Ее называют упругой энергией . Обозначим через х растяжение пружины, т.е. разность x = l l 0 длин пружины в деформированном и недеформированном состояниях. Упругая сила F зависит только от растяжения. Если растяжение x не очень велико, то она пропорциональна ему: F = – kx (закон Гука). При возвращении пружины из деформированного в недеформированное состояние сила F совершает работу

.

Если упругую энергию пружины в недеформированном состоянии условиться считать равной нулю, то

. (3.13)

в) Потенциальная энергия гравитационного притяжения двух материальных точек. По закону всемирного тяготения Ньютона гравитационная сила притяжения двух точечных тел пропорциональна произведению их масс Mm и обратно пропорциональна квадрату расстояния между ними:

,(3.14)

где G – гравитационная постоянная .

Сила гравитационного притяжения, как сила центральная, является консервативной. Для ее имеет смысл говорить о потенциальной энергии. При вычислении этой энергии одну из масс, например М , можно считать неподвижной, а другую – перемещающейся в ее гравитационном поле. При перемещении массы m из бесконечности гравитационные силы совершают работу

,

где r – расстояние между массами М и m в конечном состоянии.

Эта работа равна убыли потенциальной энергии:

.

Обычно потенциальную энергию в бесконечности U  принимают равной нулю. При таком соглашении

. (3.15)

Величина (3.15) отрицательна. Это имеет простое объяснение. Максимальной энергией притягивающиеся массы обладают при бесконечном расстоянии между ними. В этом положении потенциальная энергия считается равной нулю. Во всяком другом положении она меньше, т.е. отрицательна.

Допустим теперь, что в системе наряду с консервативными силами действуют также диссипативные силы. Работа всех сил А 12 при переходе системы из положения 1 в положение 2 по – прежднему равна приращению ее кинетической энергии К 2 – К 1 . Но в рассматриваемом случае эту работу можно представить в виде суммы работы консервативных сил
и работы диссипативных сил
. Первая работа может быть выражена через убыль потенциальной энергии системы:
. Поэтому

.

Приравнивая это выражение к приращению кинетической энергии, получим

, (3.16)

где E = K + U – полная энергия системы. Таким образом, в рассматриваемом случае механическая энергия Е системы не остается постоянной, а уменьшается, так как работа диссипативных сил
отрицательна.

Энергия - универсальная мера различных форм движения и взаимодействия.

Изменение механического движения тела вызывается силами, которые действуют на него со стороны других тел. С целью количественно описать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы .

Если тело движется прямолинейно и на него действует постоянная сила F , составляющая некоторый угол α с направлением перемещения, то работа этой силы равна проекции силы F s на направление перемещения (F s = Fcosα), умноженной на соответствующее перемещение точки приложения силы:

Если взять участок траектории от точки 1 до точки 2, то работа на нем равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Поэтому эту сумму можно привести к интегралу

Единица работы - джоуль (Дж): 1 Дж - работа, совершаемая силой 1 Н на пути 1 м (1 Дж=1 Н м).
Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:
За время dt сила F совершает работу F dr , и мощность, развиваемая этой силой, в данный момент времени
т. е. равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы; N - величина скалярная.
Единица мощности - ватт (Вт): 1 Вт - мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт = 1 Дж/с)

Кинетическая и потенциальная энергия.

Кинетическая энергия механической системы - это энергия механического движения рассматриваемой системы.
Сила F , воздействуя на покоящееся тело и приводя его в движение, совершает работу, а энергия движущегося тела увеличивается на величину затраченной работы. Значит, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, тратится на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона и умножая на перемещение dr получаем
(1)
Из формулы (1) видно, что кинетическая энергия зависит только от массы и скорости тела (или точки), т. е. кинетическая энергия тела зависит только от состояния ее движения.
Потенциальная энергия - механическая энергия системы тел , которая определяется характером сил взаимодействия между ними и их взаимным расположением.
Пусть взаимодействие тел друг на друга осуществляется силовыми полями (например, поля упругих сил, поля гравитационных сил), которые характеризуются тем, что работа, совершаемая действующими в системе силами при перемещении тела из первое положения во второе, не зависит от траектории, по которой это перемещение произошло, а зависит только от начального и конечного положений системы . Такие поля называются потенциальными , а силы, действующие в них, - консервативными . В случае, если работа силы зависит от траектории перемещения тела из одного положения в другое, то такая сила называется диссипативной ; примером диссипативной силы является сила трения.
Конкретный вид функции P зависит от вида силового поля. Например, потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна (7)

Полная механическая энергия системы - энергия механического движения и взаимодействия :
т. е. равна сумме кинетической и потенциальной энергий.

Закон Сохранение Энергии.

т. е. полная механическая энергия системы остается постоянной. Выражение (3) представляет собой закон сохранения механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со течением времени.

Механические системы, на тела которых действуют только консервативные силы (как внутренние так и внешние), называютсяконсервативными системами , и закон сохранения механической энергии мы сформулируем так: в консервативных системах полная механическая энергия сохраняется .
9. Удар абсолютно упругий и неупругий тел.

Удар - это столкновение двух или более тел, взаимодействующих очень короткое время.

При ударе тела испытывают деформацию. Понятие удара подразумевает, что кинетическая энергия относительного движения ударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара имеет место перераспределение энергии между соударяющимися телами. Опыты показывают, что относительная скорость тел после соударения не достигает своего значения до соударения. Это объясняется тем, что не бывает идеально упругих тел и идеально гладких поверхностей. Отношение нормальной составляющей относительной скорости тел после удара к нормальной составляющей относительной скорости тел до удара называется коэффициентом восстановления ε: ε = ν n "/ν n где ν n "-после удара; ν n –до удара.

Если для соударяющихся тел ε=0, то такие тела называются абсолютно неупругими , если ε=1 - абсолютно упругими . На практике для всех тел 0<ε<1. Но в некоторых случаях тела можно с большой степенью точности рассматривать либо как абсолютно неупругие, либо как абсолютно упругие.

Линией удара называется прямая, проходящая через точку соприкосновения тел и перпендикулярная к поверхности их соприкосновения. Удар называется центральным , если соударяющиеся тела до удара движутся вдоль прямой, проходящей через центры их масс. Здесь мы рассматриваем только центральные абсолютно упругие и абсолютно неупругие удары.
Абсолютно упругий удар - соударение двух тел, в результате которого в обоих участвующих в столкновении телах не остается никаких деформаций и вся кинетическая энергия тел до удара после удара снова превращается в первоначальную кинетическую энергию.
Для абсолютно упругого удара выполняются закон сохранения кинетической энергии и закон сохранения импульса.

Абсолютно неупругий удар - соударение двух тел, в результате которого тела соединяются, двигаясь дальше как единое целое. Абсолютно неупругий удар можно продемонстрировать с помощью шаров из пластилина (глины), которые движутся навстречу друг другу.

Кинетическая энергия - энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ - Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением.

Рассмотрим случай, когда на тело массой m действует постоянная сила (она может быть равнодействующей нескольких сил) и векторы силы и перемещения направлены вдоль одной прямой в одну сторону. В этом случае работу силы можно определить как A = F∙s. Модуль силы по второму закону Ньютона равен F = m∙a, а модуль перемещения s при равноускоренном прямолинейном движении связан с модулями начальной υ 1 и конечной υ 2 скорости и ускорения а выражением

Отсюда для работы получаем

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела .

Кинетическая энергия обозначается буквой E k .

Тогда равенство (1) можно записать в таком виде:

A = E k 2 – E k 1 . (3)

Теорема о кинетической энергии:

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой т равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

(4)

Физический смысл кинетической энергии:

кинетическая энергия тела, движущегося со скоростью υ, показывает, какую работу должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.

Потенциальная энергия - минимальная работа, которую необходимо совершить, чтобы перенести тело из некой точки отсчёта в данную точку в поле консервативных сил. Второе определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы. Третье определение: потенциальная энергия - это энергия взаимодействия. Единицы измерения [Дж]

Потенциальная энергия принимается равной нулю для некоторой точки пространства, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной точки называется нормировкой потенциальной энергии. Понятно также, что корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.

Потенциальная энергия поднятого над Землей тела – это энергия взаимодействия тела и Земли гравитационными силами. Потенциальная энергия упруго деформированного тела – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Потенциальными называются силы , работа которых зависит только от начального и конечного положения движущейся материальной точки или тела и не зависит от формы траектории.

При замкнутой траектории работа потенциальной силы всегда равна нулю. К потенциальным силам относятся силы тяготения, силы упругости, электростатические силы и некоторые другие.

Силы , работа которых зависит от формы траектории, называются непотенциальными . При перемещении материальной точки или тела по замкнутой траектории работа непотенциальной силы не равна нулю.

Потенциальная энергия взаимодействия тела с Землей.

Найдем работу, совершаемую силой тяжести F т при перемещении тела массой т вертикально вниз с высоты h 1 над поверхностью Земли до высоты h 2 (рис. 1).

Если разность h 1 h 2 пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяжести F т во время движения тела можно считать постоянной и равной mg.

Так как перемещение совпадает по направлению с вектором силы тяжести, работа силы тяжести равна

A = F∙s = m∙g∙ (h l – h 2). (5)

Рассмотрим теперь движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости (рис. 2) сила тяжести F т = m∙g совершает работу

A = m∙g∙s∙cos a = m∙g∙h , (6)

где h – высота наклонной плоскости, s – модуль перемещения, равный длине наклонной плоскости.

Движение тела из точки В в точку С по любой траектории (рис. 3) можно мысленно представить состоящим из перемещений по участкам наклонных плоскостей с различными высотами h" , h" и т. д. Работа А силы тяжести на всем пути из В в С равна сумме работ на отдельных участках пути:

(7)

где h 1 и h 2 – высоты от поверхности Земли, на которых расположены соответственно точки В и С.

Равенство (7) показывает, что работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях.

При движении вниз работа силы тяжести положительна, при движении вверх – отрицательна. Работа силы тяжести на замкнутой траектории равна нулю.

Равенство (7) можно представить в таком виде:

A = – (m∙g∙h 2 – m∙g∙h l). (8)

Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Работа силы тяжести при перемещении тела массой т из точки, расположенной на высоте h 2 , в точку, расположенную на высоте h 1 от поверхности Земли, по любой траектории равна изменению потенциальной энергии взаимодействия тела и Земли, взятому с противоположным знаком.

А = – (Е р 2 – Е р 1). (9)

Потенциальная энергия обозначается буквой Е р .

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, т. е. высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия Е р тела, находящегося на высоте h над поверхностью Земли, равна произведению массы m тела на модуль ускорения свободного падения g и расстояние h его от поверхности Земли:

E p = m∙g∙h . (10)

Физический смысл потенциальной энергии взаимодействия тела с Землей:

потенциальная энергия тела, на которое действует сила тяжести, равна работе, совершаемой силой тяжести при перемещении тела на нулевой уровень.

В отличие от кинетической энергии поступательного движения, которая может иметь лишь положительные значения, потенциальная энергия тела может быть как положительной, так и отрицательной. Тело массой m , находящееся на высоте h, где h 0 (h 0 – нулевая высота), обладает отрицательной потенциальной энергией:

Е p = –m∙gh

Потенциальная энергия гравитационного взаимодействия

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами т и М , находящихся на расстоянии r одна от другой, равна

(11)

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Е p = 0) принят при r = ∞. Потенциальная энергия гравитационного взаимодействия тела массой т с Землей, где h – высота тела над поверхностью Земли, М 3 – масса Земли, R 3 – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

(12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой т с Землей для малых высот h (h « R 3) равна

Е p = m∙g∙h ,

где – модуль ускорения свободного падения вблизи поверхности Земли.

Потенциальная энергия упруго деформированного тела

Вычислим работу, совершаемую силой упругости при изменении деформации (удлинения) пружины от некоторого начального значения x 1 до конечного значения x 2 (рис. 4, б, в).

Сила упругости изменяется в процессе деформации пружины. Для нахождения работы силы упругости можно взять среднее значение модуля силы (т. к. сила упругости линейно зависит от x ) и умножить на модуль перемещения:

(13)

где Отсюда

(14)

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

Из формул (14) и (15) следует, что работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком:

А = –(Е р 2 – Е р 1). (16)

Если x 2 = 0 и x 1 = х , то, как видно из формул (14) и (15),

Е р = А.

Тогда физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Похожие публикации